Belief Propagation for Minimum Convex-Cost Integral Network Flow

نویسندگان

  • Jiaming Xu
  • Zheng Lu
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Belief Propagation for Min-Cost Network Flow: Convergence & Correctness Citation

We formulate a Belief Propagation (BP) algorithm in the context of the capacitated minimum-cost network flow problem (MCF). Unlike most of the instances of BP studied in the past, the messages of BP in the context of this problem are piecewise-linear functions. We prove that BP converges to the optimal solution in pseudo-polynomial time, provided that the optimal solution is unique and the prob...

متن کامل

Belief Propagation for Min-cost Network Flow: Convergence & Correctness

We formulate a Belief Propagation (BP) algorithm in the context of the capacitated minimum-cost network flow problem (MCF). Unlike most of the instances of BP studied in the past, the messages of BP in the context of this problem are piecewise-linear functions. We prove that BP converges to the optimal solution in pseudo-polynomial time, provided that the optimal solution is unique and the prob...

متن کامل

Minimum Convex Cost Dynamic Network Flows

This paper presents and solves in polynomial time the minimum convex cost dynamic network flow problem, an infinite horizon integer programming problem which involves network flows evolving over time. The model is a finite network in which each arc has an associated transit time for flow to pass through it. An integral amount of flow is to be sent through arcs of the network in each period over...

متن کامل

Belief Propagation for Min-Cost Network Flow: Convergence and Correctness

Distributed, iterative algorithms operating with minimal data structure while performing little computation per iteration are popularly known as message-passing in the recent literature. Belief Propagation (BP), a prototypical message-passing algorithm, has gained a lot of attention across disciplines including communications, statistics, signal processing and machine learning as an attractive ...

متن کامل

Smoothed Analysis of Belief Propagation for Minimum-Cost Flow and Matching

Belief propagation (BP) is a message-passing heuristic for statistical inference in graphical models such as Bayesian networks and Markov random fields. BP is used to compute marginal distributions or maximum likelihood assignments and has applications in many areas, including machine learning, image processing, and computer vision. However, the theoretical understanding of the performance of B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010